
A Pilot Study of the Safety and Usability of the
Obsidian Blockchain Programming Language
Gauri Kambhatla
Electrical Engineering & Computer Science, University of Michigan, United States

Michael Coblenz
School of Computer Science, Carnegie Mellon University, United States

Reed Oei
Department of Computer Science, University of Illinois, United States

Joshua Sunshine
School of Computer Science, Carnegie Mellon University, United States

Jonathan Aldrich
School of Computer Science, Carnegie Mellon University, United States

Brad A. Myers
School of Computer Science, Carnegie Mellon University, United States

Abstract
Although blockchains have been proposed for building systems that execute critical transactions,
security vulnerabilities have plagued programs that are deployed on blockchain systems. The
programming language Obsidian was developed with the purpose of statically preventing some of the
more common of these security risks, specifically the loss of resources and improper manipulation of
objects. The question then is whether Obsidian’s novel features impact the usability of the language.
In this paper, we begin to evaluate Obsidian with respect to usability, and develop materials for a
quantitative user study through a sequence of pilot studies. Specifically, our goal was to assess a)
potential usability problems of Obsidian, b) the effectiveness of a tutorial for participants to learn
the language, and c) the design of programming tasks to evaluate performance using the language.
Our preliminary results tentatively suggest that the complexity of Obsidian’s features do not hinder
usability, although these results will be validated in the quantitative study. We also observed the
following factors as being important in a given programmer’s ability to learn Obsidian: a) integrating
very frequent opportunities for practice of the material – e.g., after less than a page of material at a
time, and b) previous programming experience and self-efficacy.

2012 ACM Subject Classification Software and its engineering → Domain specific languages; Human-
centered computing → User studies; Human-centered computing → Usability testing

Keywords and phrases smart contracts, programming language user study, language usability

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.23

1 Introduction

Blockchains have a myriad of applications, including shipping, supply chain, auctions, storing
health records, and voting [?]. A blockchain is used when a central authority cannot be
trusted; instead of a singular ledger (as is used by an entity like the Federal Reserve), a
distributed ledger is used to keep track of transactions that are made, held accountable by the
users of the blockchain themselves. Smart contracts are programs that are deployed across
a blockchain network. Since blockchain technology is often used in potentially high-stakes
contexts, such as financial transactions, if a bug in a contract is exploited, it could involve
loss of important resources (like money or personal items). Some of the more common of
these security risks are (1) loss of resources and (2) manipulating objects at improper times.

© Gauri Kambhatla, Michael Coblenz, Reed Oei, Joshua Sunshine, Jonathan Aldrich, Brad Myers;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/OASIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

23:2 A Usability Study of Obsidian

Current status quo blockchain languages (such as Solidity) have no mechanism to prevent
such bugs.

Obsidian is a programming language for writing smart contracts that is designed to
prevent these two issues; it uses both typestate and linear types to prevent such risks
statically [?]. In order to detect and prevent these vulnerabilities, Obsidian introduces the
concepts of ownership, assets, and states. Ownership is a property of references, rather
than the objects themselves. There are three types of references; Owned, Unowned, and
Shared. An object can have exactly one Owned reference, and any number of Unowned
references. It can have any number of Shared references, but only if there is no Owned
reference. Making an object an asset enables the compiler to prevent losing track of Owned
references. Assets, combined with permissions (the types of ownership references) allow
the compiler to detect the loss-of-resource security bug. Objects can also have states, and
certain transactions can only occur within a particular state. States help prevent improper
manipulation of objects; certain contracts might allow certain transactions only when in an
appropriate state. A contract is similar to a class in other object-oriented languages, with
corresponding transactions (analogous to methods) and fields (like member variables) [?].

Yet how do we know Obsidian is effective in accomplishing what it is designed to achieve?
Do users actually make fewer of these security mistakes in Obsidian than in other common
smart contract programming languages, such as Solidity? And how usable is Obsidian in
the long term, after programmers have mastered the language? In this paper, we focus on
beginning to answer these questions; we want to see whether the bugs that Obsidian detects
are ones we observe people inserting frequently in the laboratory. In addition, we want to
see whether the language is in fact usable, and how we can teach it to potential users.

We intend to run a user study where participants will learn either Solidity or Obsidian
through a tutorial, and then attempt a series of programming tasks that will test their
knowledge of the language. We will also assess the safety of the code they have will write. In
order to develop these programming tasks and the Obsidian tutorial, we first ran a series of
pilot studies. This paper describes the design and results of those pilot studies, addressing in
particular, the following research questions:

RQ1 What are the most significant usability problems with Obsidian?
RQ2 How should a tutorial be best authored to help one learn a language sufficiently well

to get to the point where usability can be evaluated?
RQ3 How do we design programming tasks that assess the ability to program effectively and

also potentially expose the types of bugs that our tool would detect or prevent?

The answers to these research questions, and what we learned from this study could also
be of interest to a broader audience; specifically, the initial findings we report in this paper
that could feed into future work are as follows:

A potential design of a method of teaching programmers to effectively learn an entirely
new language composed of complex features
Hypotheses on why some programmers are more effectively able to learn and utilize a
new programming language than others
Evidence that the additional features Obsidian introduces for security can actually be
effectively used by programmers

It is important to note the findings we present here through our pilot studies are not fully
validated; we plan to substantiate them in our follow-up quantitative user study.

G. Kambhatla et al. 23:3

2 Related Work

Designing programming tools and languages has been shown to be better when done with
a human-centered approach [?]. It is often inadequate to just use technical methods in
assessing properties of a language. For example, even if type soundness has been proven,
the language might be too complex for a programmer to learn and use [?]. Programming
languages are interfaces between a human programmer and a computer to enable people to
effectively create programs, and as a result, should be tested and evaluated through user
studies with actual developers. Obsidian has been designed using such a human-centered
approach [?], and is similarly being evaluated through user studies.

There are differences in approaches to programming between novices and experts [?].
Novices generally lack detailed mental models of what they are doing, and approach program-
ming one line at a time, rather than as meaningful blocks [?]. On the other hand, experts
tend to be faster and more accurate, able to make use of a variety of effective strategies and
more vast knowledge base [?]. The participants in the pilot studies fall somewhere between
novice and expert, and their approach to programming may play a role in their success in the
tasks given to them. While knowledge is the ability to state how something works, strategies
are the ability to apply that knowledge. There are many different strategies programmers
use to comprehend programs, including systematic (tracing through all the code in detail),
as-needed (only looking at code related to the required task), and inquiry episodes (asking
a question, hypothesizing an answer, and verifying by looking at code, or compiling the
program), among others [?]. The programming strategy participants in our study use is a
variable that could influence how they learn Obsidian.

In addition, studies of novice programmers have shown that past experience is strongly pre-
dictive of self-efficacy, and that a strong mental model increases self-efficacy [?]. Ramalingam
et al. also found that both of these (self-efficacy and strong mental models) affect perform-
ance in an introductory class setting. Active learning helps develop these mental models;
it requires an individual to be active in constructing their own knowledge and finding new
ideas [?]. An active learning environment is beneficial to learning programming because it is
one that provides immediate feedback and engaged participation, which can help develop
mental constructions of programming concepts [?]. Although Obsidian is not being taught
to novice programmers in a course setting, self-efficacy and mental models might still play
roles in the ability to learn the language effectively, and teaching through active learning
might help participants pick up the language more successfully.

3 Study Design

In this work, we focused on designing the Obsidian condition for the quantitative user study.
Participants in our pilot studies were asked to do the Obsidian tutorial, and then some more
in-depth programming tasks, during which they were asked to think out loud. They were
told they could ask questions about anything they didn’t understand throughout the study;
the answers to these questions could then be incorporated in the next iteration of the tutorial
and tasks. This pilot study was approved by our IRB, and participants were paid $10/hour
for their time during the study.

We chose tasks with potential real blockchain use-cases for external validity; by approx-
imating code an actual smart contract programmer might write, we hope to be able to
generalize our conclusions to our proposed end applications of Obsidian. Each task had a
series of parts that tested different aspects of Obsidian, and are described below, along with
the design of the tutorial.

CVIT 2016

23:4 A Usability Study of Obsidian

Obsidian Tutorial

The tutorial consisted of a Qualtrics survey with a few multiple choice, write-in answers, short
answer questions, and small programming questions. It was split into eight sections: four on
ownership, one on assets, and three on states. An early version of the tutorial had only four
sections, but we subdivided it because of participant feedback of having too much information
at once with just a few sections. Participants completed programming questions in a separate
Visual Studio Code (VSCode) window, in which participants could compile their code to
confirm that they had complied with the type system’s requirements. Some of the short-
answer questions were purposefully open-ended, as in “Describe the relationship between
ownership and states in your own words.” The objective was to make the participant think
about, and thereby internalize, these concepts, rather than to evaluate their understanding.

Auction Task

The Auction task simulates an English auction; there are multiple Bidders who each make
a Bid for a single Item being sold by a Seller. The highest Bidder receives the Item for the
price of the highest Bid. However, unlike in a normal English auction, when a Bidder makes
a Bid, they give the Money to the Auction house immediately, and the Money is returned
to that Bidder if another Bidder makes a higher Bid. This requirement ensures that all bids
are legitimate, rather than allowing for a failure mode in which the sale cannot be completed
because a bidder does not pay for the item. A consequence is that the contract must return
the bid money every time a higher bid is made. If a participant forgot to do this, they would
lose a resource (the bid money), which the Obsidian compiler would detect.

The task included five parts. The most significant parts of this task were 3 and 4, which
allowed for a potential loss-of-resource bug. Part 3: Write code to return money to a Bidder
in the case that the bid is not greater than the current maximum bid. This part (whose
starter code is shown in Listing 1) was created to prime the participant for the next question,
so the participant is aware there is a way to return money to a Bidder. Part 4: Update
the current maximum bid (i.e., given that the new bid is greater than the previous, replace
the maxBid with the new one). Since Money is an asset, and a Bid contains Money, the
participant will not be able to simply do something like maxBid = newBid; the money
will have to be returned to the Bidder before overwriting maxBid, otherwise they will get
a compiler error in regards to overwriting an asset (losing a resource). This part (starter
code also shown in Listing 1) was meant to capture this potential pitfall. To implement this
correctly, a participant must return the Money to the Bidder and disown the Bid. They
could write code to do this or call a given function that does both these things.

Listing 1 Partial Starter Code for Auction Parts 3 & 4
transaction makeBid(Auction @ Open this, Bid @ Owned >> Unowned newBid,

Bidder @ Unowned bidder) {
if (newBid.getAmount() > bid.getAmount()) {

setCurrentBid(newBid);
Bidder tempBidder = maxBidder;
maxBidder = bidder;

}
else {

//Part 3. TODO: return the newBid money to the bidder.
//You may call any other transactions as needed.

}
}
transaction setCurrentBid(Auction @ Open this, Bid @ Owned >> Unowned b) {

//Part 4. TODO: set the current bid to the new bid b.

G. Kambhatla et al. 23:5

//You may call any other transactions as needed.
}

Pharmacy Task

The Pharmacy task simulates a pharmacy; there are Prescriptions, PrescriptionRecords
(which keep track of Prescriptions), and Patients (who have Prescriptions), as well as the
Pharmacy contract, which has a list of PrescriptionRecords. The goal of this task is to
have the participants utilize states to prevent improper use of the prescription; a Patient
can only fill a Prescription when they have additional refills. There were three parts to
this task; the third was most significant, which had a participant writing in lines of code
to fill a prescription. In this part (starter code shown in Listing 2), the participant must
take an element off a list, apply transactions to that object, and add it back to the list. It
assesses understanding of the code, and the ability to use the language to implement what
the participant wants to occur, as well as correct use of states.

Listing 2 Partial Starter Code for Pharmacy Part 3
transaction fillPrescription(Prescription @ Unowned prescription) {

MaybeRecord maybeRecord = prescriptionList.removeIfExists(prescription);
// TODO Part 3: Fill in the rest of this transaction.
// You will need to call the doFill transaction in this
// class (Pharmacy) on the appropriate PharmacyPrescriptionRecord.
// Be sure to record that the prescription has been filled.

}

Gambling Tasks

The Gambling task simulates betting at a Casino; before every Game, Bettors place a
bet on the outcome of the Game. A set of restrictions and assumptions is given to the
participant, as well as a sequence diagram showing a potential timeline of possible events, and
structural diagram explaining how contracts relate to each other. This task is purposefully
more open-ended; the participant can design and implement the Casino contract however
they would like using Obsidian, but the program must comply with the given requirements.
The goal of this task was to see how the participants used what they learned about the
language to design their own program (and be able to implement it). Code for the other
contracts (Bettor, Money, etc.) is not shown here due to space constraints.

Listing 3 Partial Gambling Starter Code
main asset contract Casino {

Money @ Owned money;
Game @ Owned currentGame; //The game that is currently being played
BetList @ Shared bets; //The bets for the current game being played

Casino @ Owned() {
money = new Money(100000);
currentGame = new Game();
bets = new BetList();

}
//TODO: Add your code here.

}

CVIT 2016

23:6 A Usability Study of Obsidian

4 Initial Results

Since these studies were exploratory, serving as preparation for our evaluative user study,
we changed the tutorial and tasks after nearly every participant, based on the qualitative
results and participant feedback. We recruited six participants (three men, and three women),
all of whom were undergraduates in computer science at different universities. Despite all
the participants being almost the same amount through their undergraduate career (they
were either rising Juniors or Seniors), there was a wide range of 3 - 9 years of previous
programming experience, and they all had a different CS education. All the participants were
familiar with Java to varying degrees (ranging from 1.5 to 8 years of experience), which was
a requirement for participation, since Obsidian is similar to Java. None of the participants
had any previous experience with blockchain programming. Each participant was given an
anonymous participant ID: R0, R1, etc.

Participants worked on a 15” MacBook Pro with a second monitor that displayed the
documentation pages and instructions for the tasks. We recorded screen and audio of each
session. The programming tasks were all done in VSCode, for which we created a plugin for
Obsidian syntax highlighting, and through which we ran the Obsidian compiler.

Some participants did not seem to understand and internalize the information given
in the tutorial despite reading it. For example, R2 said the idea of ownership made sense
theoretically, but not in application. This may be because R2 missed some key concepts,
like the fact that ownership is a property of a reference, not an object. In contrast, other
participants seemed to fully comprehend the material; R1, R3, and R5 got nearly all questions
correct. A summary of the tutorial results are shown in Table 1.

Participant Tutorial Version Questions Correct Time

R0 2 Parts, No questions N/A N/A

R1 4 Parts, all multiple-choice 19/19 35 min

R2 4 Parts, all multiple-choice 11/19 40 min

R3 8 Parts: multiple-choice,
short answer, programming

20/22 (non-code), 8/8 (code) 1.25 hours

R4 8 Parts: multiple-choice,
short answer, programming

14/22 (non-code), 4/8 (code) 2.5 hours

R5 8 Parts: multiple-choice,
short answer, programming

20/22 (non-code), 8/8 (code) 53 min

Table 1 Tutorial Results

All the participants except R4 did the Auction task. They all had the most trouble
with part 4; neither R0 nor R2 was able to complete it. Every participant who did part 4
started by writing bid = newBid, which overwrote an owned reference to an asset; the
compiler generated an appropriate error message. Participants R1, R3, and R5 realized that
ownership of the original bid must be transferred first. R1 even said out loud after typing
this in, “Oh is bid an asset? Yes, it is an asset. Then this should fail.” After compiling the
code and confirming the failure, R1 made sure the original bid was transferred. R3 did the
same, but first returned the Money in the Bid to its Bidder. R5 was the only one that used
the given transaction returnBidMoney() (which gave the Money back to the Bidder and
disowned the current bid).

G. Kambhatla et al. 23:7

All the participants except R4 were given the Pharmacy task. R0 was able to complete
parts 1 and 2, but was unable to do any of the third part; the participant could not figure
out what to do, and was stopped by the experimenter due to time constraints. Participant
R2 did part 1 incorrectly, and part 2 correctly. R2 was unable to figure out the third part,
and stopped after a significant amount of trial and error due to time constraints. R2 was
asked by the experimenter to answer in pseudocode; the participant did this mostly correctly
(but forgot to check if the PrescriptionRecord actually existed). Participant R3 did the whole
task correctly, but forgot to append the PrescriptionRecord back on the list after consuming
a refill. Participants R1 and R5 did the entire task correctly.

Only R3 and R5 were given the Gambling task (it was created after R1, and both R2
and R4 could not take it because of time constraints). R3 took 1 hour to complete the task
and get the code to compile. Most of this time was spent on understanding the architecture
of the objects given, and the structure of the problem itself. Participant R5 took 36 minutes
to do this task and get the code to compile. In this version, the requirements were unchanged,
but the problem was made more clear, and there were fewer layers of abstraction. For R5,
an architectural diagram was added to show how objects are related (e.g., a Bet has a Bettor
and a BetPrediction), in addition to the sequence diagram (showing an example of potential
actions) given to R3. Both R3 and R5 successfully designed and implemented a program
that met all the requirements given in the specification. They made correct use of states and
permissions. R3’s program was 63 lines long, and R5’s was 56 lines long.

5 Discussion

A clear distinction can be drawn between the results of the different participants. Participants
R0, R2, and R4 struggled with the study (both the tutorial and the programming tasks),
while participants R1, R3, and R5 found the tutorial and tasks easy to understand. There
was almost no middle ground; one of the challenges in designing the tutorial and tasks
was that after one participant, it seemed the exercises were very difficult and needed to
be simplified, but after another, they seemed too simple. While R0, R2, and R4 needed
prompting and additional explanation, and still did not finish all the exercises, R1, R3,
and R5 easily completed the tutorial (including the programming exercises for R3 and R5).
These three participants were able to work through the programming tasks, write code in
the language, understand the compiler errors, and make fixes when necessary. They had
understood the new concepts they were taught; while working through the Pharmacy task,
R5 said “... and this takes an owned [reference] and makes it unowned...,” showing that the
participant grasped the idea of ownership. Both R1 and R3 also said similar things while
thinking out loud. On the other hand, R0, R2, and R4 got stuck; it was clear that although
they read through the tutorial, they did not fully understand the concepts. For example,
despite reading in the documents, answering questions about it in previous parts of the
tutorial, and given an explanation by the experimenter, R4 did not seem to understand how
state and permission transitions worked as types for a parameter in a transaction declaration.

Below are hypothesized explanations for the differences among participant performance:

General programming experience. The participants who struggled had an average of
3.2 years of programming experience; the others had an average of 7.5 years of experience.
One of the key observations we made during the pilot studies was that the participants
who struggled had the most trouble because upon getting an error, they would either
get stuck or start trying random solutions that neither made sense conceptually nor
syntactically. Participants who successfully completed the tutorial and tasks used a

CVIT 2016

23:8 A Usability Study of Obsidian

variety of techniques to fix compiler errors. They had less trouble understanding the
compiler messages (most of the time, they knew what the problem was immediately),
and even if they did not, they used strategies to find a solution. These observations
suggest that the amount of past programming experience played a role in how effective
participants were in using the unfamiliar language.
Object-oriented (OO) programming experience. The less effective participants
had an average of 2.2 years of Java experience, and the more effective ones had an average
of 5.3 years (familiarity with Java was a prerequisite to participating in this study).
Perhaps some concepts that are learned in OO classes, or learned through developing in
OO languages affects the way one learns other OO languages.
Teaching style. The tutorial was text- and exercise-based. Perhaps the participants
who struggled may have done better if the material had been taught in a video, or lecture
format, or in a more interactive way.
Type of programmer. Different programmers use different programming strategies (see
§2). Perhaps some of these strategies are more effective in learning or using Obsidian than
others. While there were systematic and opportunistic strategies used in the group that
was more effective, the ones who had more trouble only used an opportunistic approach.
Self-efficacy and interest. Self-efficacy appeared to play a role in how effective parti-
cipants were in using the language while completing the tasks. The effective participants
were very confident; they were not afraid to question the experimenter about things they
did not understand and things they thought were wrong in the tutorial or tasks. They
were also more relaxed; the participants who struggled seemed tense. It is difficult to
tell whether confidence entailed being effective in completing the tasks, or whether doing
well made participants more confident. In addition, lower self-efficacy might have played
a role in whether participants asked questions when they were confused, and thus how
well they performed. The effective participants also had a genuine interest in what they
were learning. They made noises of surprise or interest while reading the tutorial, saying
for example “Oh, that makes sense”, or “huh, that’s interesting.” In contrast, other
participants went through the study like taking an exam, or doing an assignment; they
were just doing exercises they were given. Perhaps having an interest in learning a new
language made participants more successful at completing the given exercises, or at least
created a more open mindset that might have allowed for faster debugging.

RQ1 asked about identifying potential usability problems with Obsidian. Multiple
participants mentioned things related to the environment; a few expected more precise
autocomplete (VSCode has a default autocomplete that lists any words used previously
in the window, which confused some participants), and one asked about in-place error
diagnostics (showing errors as one types). In addition, a few participants were confused
by some of the compiler errors. Two participants tried to add a permission or state to an
object they were creating, like g = new Game@FinishedPlaying(). The error message
was Error: '(' expected, but @ found, which they eventually figured out. R2
did not understand the compiler message variable is an owning reference to an
asset, so it cannot be overwritten at first, and when it was explained by the
experimenter, was unable to figure out how to resolve the problem. R5 was confused by the er-
ror message Can’t reassign to variables that are formal parameters or
which are used in a dynamic state check. R5 commented that even distin-
guishing between the two (whether a formal parameter or used in a dynamic state check)
might be more helpful. None of the participants had much feedback about the language
itself, although there was a general consensus that states were an easier concept to grasp

G. Kambhatla et al. 23:9

than ownership because they are more familiar.
RQ2, asked about how to design a language tutorial. Teaching any new programming

language is hard; teaching a new programming language that has more complex features
may be even harder. From our results, we learned a few things: (1) material that should be
read needs to be split into manageable sections, (2) simply giving people material to read is
not enough for them to understand it – they need to be given questions along the way to
force them to thoroughly comprehend it, and (3) these questions must have them actually do
problems themselves, rather than merely pick an answer choice. When given large amounts of
reading material at a time, participants had trouble remembering all the information; an early
participant commented that they wanted to see an example when doing the programming
tasks, and while they knew there was probably one in the documentation, they had no idea
where to look. After splitting the reading material into eight sections (each less than a
page), we observed that later participants found it easier to understand the material initially,
but that this also enabled going back to particular documents for reference when doing the
programming exercises and tasks. Questions (in particular, questions that have someone
write or do or try something) seemed more effective than only having participants read text.
Participants who used the version of the tutorial with programming questions said they were
helpful, and one participant who did not specifically stated that being able to try out the
code would have helped learn and internalize the material more.

RQ3 asked about designing programming tasks that:

1. assess the ability to program effectively;
2. expose the types of bugs likely to be made by participants in the control condition

The Auction task was mostly straightforward except for part 4, in which everyone who
attempted it made the same mistake of overwriting an asset. This would have caused the loss
of a resource (money) if it had not been caught by the Obsidian compiler. This does seem to
be a relatively common security bug, since every participant made the mistake at first. It
therefore seems likely that Solidity participants in the user study would insert the same bug
as well, but would not have the compiler to remind them of the error. This suggests that
this task fulfills goal (2). The Pharmacy task required an understanding of how contracts
interact with each other, as well as using states to prevent improper manipulation of objects.
The task was intended to require higher-level insight from participants, so the instructions
for the third part in this task do not explicitly lay out everything the participant needs to
do. The task requires the participant to be able to understand Obsidian code (including
the novel concepts of ownership and states). In the Gambling task (again only given to R3
and R5), the participants wrote 50+ lines of code. Though a small program, this is not a
trivial amount of code, especially since they were able to design a program to follow the
specifications accurately, implement their design correctly using concepts they had only just
learned (ownership and states) and have their code compile using syntax that was new to
them for this study. As a result, the Pharmacy and Gambling tasks seem to fulfill (1).

In this pilot study, we started to gather evidence that the new language features of
Obsidian that allow for writing safer smart contracts can be used effectively by real users.
The Auction task had participants use ownership to prevent the loss of a resource, and the
Pharmacy task had participants use states to prevent incorrect manipulation of objects. All
the participants who did these tasks were able to use ownership and states, and all of the
more experienced ones used ownership and states to complete them correctly. Although the
features of the language that allow for greater safety are more complicated, and one might
assume make the language less usable, we did not observe this in these initial results. This
will need to be more fully validated with additional participants in our user study.

CVIT 2016

23:10 A Usability Study of Obsidian

6 Threats to Validity

The participants were a convenience sample of undergraduates studying computer science;
this may not be representative of the general population of programmers. In the quantitative
study, we hope to have a more diverse group of participants who more closely align with the
intended users of Obsidian. We only had six participants, and not all of them attempted
all parts of the study. In addition, some of our participants had limited object-oriented
programming experience. As a pilot study, our goal was to refine our study design and
hypotheses, and for those purposes, we believe our approach sufficed.

7 Conclusion and Future Work

We designed and conducted pilot studies to find potential usability problems with Obsidian,
its tutorial, and the tasks used to evaluate it. We created a tutorial that helps at least some
participants learn Obsidian well enough to use it effectively. We also created programming
tasks that test a participant’s ability to use Obsidian competently and have the potential
for participants to make the types of security bugs that are caught by Obsidian’s compiler.
We identified hypotheses for why some of our participants found it easier to learn and use
Obsidian than others, and more generally, why picking up new languages is easier for some
people than it is for others. We found that an incremental approach of teaching the language
that included regular practice opportunities was most effective, but that participants with
more programming experience appeared to be much more successful at completing the tasks.

In the future, we will conduct a quantitative user study to compare Obsidian to a control
language with respect to usability and security, and will continue to make any necessary
changes to our tutorial and programming tasks. In the process, we hope to evaluate our
hypotheses regarding why some participants are more successful in learning the language
and completing the programming tasks, with a focus on self-efficacy and experience.

References
1 Celeste Barnaby, Michael Coblenz, Tyler Etzel, Eliezer Kanal, Joshua Sunshine, Brad Myers,

and Jonathan Aldrich. A User Study to Inform the Design of the Obsidian Blockchain DSL.
page 7, 2017.

2 Michael Coblenz. Obsidian: A Safer Blockchain Programming Language. In Proceedings of
the 39th International Conference on Software Engineering Companion, ICSE-C ’17, pages
97–99, Piscataway, NJ, USA, 2017. IEEE Press. event-place: Buenos Aires, Argentina. URL:
https://doi.org/10.1109/ICSE-C.2017.150, doi:10.1109/ICSE-C.2017.150.

3 Stefan Hanenberg. Faith, Hope, and Love: An Essay on Software Science’s Neglect of Human
Factors. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 933–946, New York, NY, USA, 2010.
ACM. event-place: Reno/Tahoe, Nevada, USA. URL: http://doi.acm.org/10.1145/
1869459.1869536, doi:10.1145/1869459.1869536.

4 B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon. Programmers Are Users Too: Human-
Centered Methods for Improving Programming Tools. Computer, 49(7):44–52, July 2016.
doi:10.1109/MC.2016.200.

5 Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. Self-efficacy and mental models
in learning to program. In Proceedings of the 9th annual SIGCSE conference on Innovation and
technology in computer science education - ITiCSE ’04, page 171, Leeds, United Kingdom, 2004.
ACM Press. URL: http://portal.acm.org/citation.cfm?doid=1007996.1008042,
doi:10.1145/1007996.1008042.

https://doi.org/10.1109/ICSE-C.2017.150
http://dx.doi.org/10.1109/ICSE-C.2017.150
http://doi.acm.org/10.1145/1869459.1869536
http://doi.acm.org/10.1145/1869459.1869536
http://dx.doi.org/10.1145/1869459.1869536
http://dx.doi.org/10.1109/MC.2016.200
http://portal.acm.org/citation.cfm?doid=1007996.1008042
http://dx.doi.org/10.1145/1007996.1008042

G. Kambhatla et al. 23:11

6 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and Teaching Program-
ming: A Review and Discussion. Computer Science Education, 13(2):137–172, June 2003.
URL: https://www.tandfonline.com/doi/full/10.1076/csed.13.2.137.14200,
doi:10.1076/csed.13.2.137.14200.

7 M. A. D. Storey, K. Wong, and H. A. Müller. How do program understanding tools affect
how programmers understand programs? Science of Computer Programming, 36(2):183–
207, March 2000. URL: http://www.sciencedirect.com/science/article/pii/
S0167642399000362, doi:10.1016/S0167-6423(99)00036-2.

8 Dmitrii Suvorov and Vladimir Ulyantsev. Smart Contract Design Meets State Machine
Synthesis: Case Studies. arXiv:1906.02906 [cs], June 2019. arXiv: 1906.02906. URL:
http://arxiv.org/abs/1906.02906.

9 Edward Zimudzi. ACTIVE LEARNING FOR PROBLEM SOLVING IN PROGRAMMING
IN A COMPUTER STUDIES METHOD COURSE. Educational Sciences, 3(2):9, 2012.

CVIT 2016

https://www.tandfonline.com/doi/full/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://www.sciencedirect.com/science/article/pii/S0167642399000362
http://www.sciencedirect.com/science/article/pii/S0167642399000362
http://dx.doi.org/10.1016/S0167-6423(99)00036-2
http://arxiv.org/abs/1906.02906

	Introduction
	Related Work
	Study Design
	Initial Results
	Discussion
	Threats to Validity
	Conclusion and Future Work

